QAGU

| B

Geophysical Research Letters

RESEARCH LETTER

10.1002/2016GL070918

Key Points:

« The Northern Appalachian Anomaly is
an intense low-velocity anomaly in the
asthenosphere just east of the cratonic

margin

« Its seismic attributes are consistent
with a modern thermal origin related
to small-scale upwelling at the
continental margin

« Its spatial association with the Great
Meteor hot spot track is coincidental

Supporting Information:
« Supporting Information S1

Correspondence to:
W. Menke,
menke@ldeo.columbia.edu

Citation:

Menke, W., P. Skryzalin, V. Levin,

T. Harper, F. Darbyshire, and T. Dong
(2016), The Northern Appalachian
Anomaly: A modern asthenospheric
upwelling, Geophys. Res. Lett., 43,
doi:10.1002/2016GL070918.

Received 19 AUG 2016
Accepted 28 SEP 2016
Accepted article online 29 SEP 2016

©2016. American Geophysical Union.
All Rights Reserved.

The Northern Appalachian Anomaly: A modern
asthenospheric upwelling
William Menke’, Peter Skryzalin?, Vadim Levin?, Thomas Harper?, Fiona Darbyshire?, and Ted Dong’

1Lamont—Doherty Earth Observatory, Columbia University, Palisades, New York, USA, 2Department of Earth and Planetary
Science, State University of New Jersey Rutgers, Piscataway, New Jersey, USA, 3Department of Geosciences, Boise State
University, Boise, I[daho, USA, 4Centre GEOTOP, Université du Québec a Montréal, Montréal, Québec, Canada

Abstract The Northern Appalachian Anomaly (NAA) is an intense, laterally localized (400 km diameter)
low-velocity anomaly centered in the asthenosphere beneath southern New England. Its maximum shear
velocity contrast, at 200 km depth, is about 10%, and its compressional-to-shear velocity perturbation ratio is
about unity, values compatible with it being a modern thermal anomaly. Although centered close to the track
of the Great Meteor hot spot, it is not elongated parallel to it and does not crosscut the cratonic margin. In
contrast to previous explanations, we argue that the NAA’s spatial association with the hot spot track is
coincidental and that it is caused by small-scale upwelling associated with an eddy in the asthenospheric flow
field at the continental margin. That the NAA is just one of several low-velocity features along the eastern
margin of North America suggests that this process may be globally ubiquitous.

1. Introduction

The eastern North American coast is the site of significant seismic velocity heterogeneities [Levin et al., 1995;
Levin et al., 2000; Li et al., 2003; Godey et al., 2004; Nettles and Dziewonski, 2008; Chu et al., 2013; Schmandt and
Lin, 2014; Skryzalin et al., 2015; Pollitz and Mooney, 2016; Porter et al., 2016]. They are a record—albeit an
ambiguous one—of lithospheric and asthenospheric processes operating at the continental margin. We
focus on the Northern Appalachian Anomaly (NAA), a particularly strong low-velocity feature in the shallow
mantle located in a westward indentation (or divot [Fouch et al., 2000]) of the continental lithosphere in
southern New England (Figure 1a). The NAA has been explained as a relic feature associated with the
Great Meteor hot spot (GMHS) [van der Lee and Nolet, 1997; Eaton and Frederiksen, 20071 which traversed
southern New England at ~130-100 Ma [Sleep, 1990]. Here we consider the alternative hypothesis that it is
a modern feature associated with small-scale asthenospheric upwelling unrelated to any hot spot. We show
that the NAA is a compact (400 km wide) columnar feature and that its traveltime delays are consistent with
an extremely strong (~700°C) asthenospheric temperature anomaly. After analyzing several previously pub-
lished tomographic images and a new one described here, we conclude that it is most consistent with a
strong local upwelling associated with the eastern edge of the Laurentian (pre-Cambrian) continental litho-
sphere [King and Anderson, 1998].

Early images of the NAA depict it as having a large (>1000km) and strongly elongated planform that
crosscuts the continental margin [van der Lee and Nolet, 1997]. The most recent images [Schmandt and
Lin, 2014; Porter et al., 2016] including our own (Figure 1b), which are based on much denser data cover-
age, depict it as having a smaller (~400km) and more subcircular planform positioned just east of the
Appalachian Front (AF) [Hynes and Rivers, 2010], which itself may be near the eastern edge of the
Laurentian lithosphere [Thomas, 2006]. The early images are suggestive of GMHS affinity, but the more
recent ones are not.

2. Data Analysis

Our new analysis, used to better define the properties of the NAA, is based on broadband digital recordings
of M,, > 5.5 teleseisms for the 2010-2016 time period from 214 sites (see supporting information Text S1) in
New England and southern Canada. Differential P and S wave traveltimes, relative to the AK135 global model
[Kennett et al., 1995], were determined for all stations pairs that recorded a given teleseism via cross correla-
tion [e.g., Menke and Menke, 2016]. Results were refined with the out-member averaging noise-reduction
algorithm [Menke and Menke, 2014] (supporting information Text S2).
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Figure 1. (a) Map of northeastern North America showing the major geological features, including AF (sawtooth blue),
Grenville Front (sawtooth purple), and Adirondack Mountains (AM). (b) Enlargement of region (orange box in Figure 1a),
showing GMHS track (dashed green) and outline of NAA slow velocity anomaly at 200 km depth by this (orange) and other
recent studies (van der Lee and Nolet [1997], brown; Schmandt and Lin [2014], purple; Pollitz and Mooney [2016], red). In all
cases, the western end of the NAA is near the AF.

The traveltime anomalies are a measure of the overall heterogeneity of the region. The RMS values are 0.34 s
for P waves and 0.97 s for S waves, with an overall respective range of 2.3 s and 6.8 s (Figure 2a). We put these
numbers into context by considering that the 6.8 s S traveltime anomaly could be caused by a hypothetical
velocity perturbation Avs~0.48 km/s in an upper mantle column with an average shear velocity of 4.6 km/s
that is 300 km thick (supporting information Text S3). This ~10% velocity anomaly is surprisingly large for a
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Figure 2. (a) Histograms of P wave (solid) and S wave (bold) differential traveltime anomalies JAT (relative to the AK135
prediction). Only delays from pairs of stations observing the same teleseism are counted. (b) Scatterplot of JATp versus
OATs for the same data described in Figure 2a, with best fitting line (red). (c) Scatterplot of Avp versus Avs for slice through
tomographic model at 200 km depth, with best fitting line (red). (d) Resolution test showing vertical profile through a
hypothetical slow anomaly (grey) centered at 250 km depth, and three recovered anomalies (blue, red, and green) for
different amounts of damping (supporting information Texts S4 and S5).
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Figure 3. (a) P wave traveltime anomalies for a teleseism from the west (red arrow, which points back toward the hypocen-
ter) observed at seismic stations (circles). AF, GF, and GMHS track are also shown. (b) P wave traveltime anomalies predicted
by the tomographic model in Figure 3c. (c) Slice through vp tomogtaphic model at 100 km depth, with regions further than
500 km from the array center masked to reflect ray coverage. (d—f) Same as Figures 3a-3c but for S wave. The latest tra-
veltime anomalies and slowest velocities occur east of the AF.

nominally tectonically quiescent region. Both P wave and S wave traveltime anomalies exhibit spatially coher-
ent structure that is dominated by fast arrivals in the cratonic northwest of the study region and late arrivals
in a region that is centered in southern New England (the NAA; Figures 3a and 3b). The boundary between
fast and slow regions is sharp and roughly follows the AF.

We invert differential traveltime anomalies for three-dimensional compressional and shear wave structure
using RAYTRACE3D [Menke, 2005; see also Menke, 2012] (supporting information Text S4). The inversions
(Figures 3c and 3f) indicate that the NAA is predominantly an asthenospheric feature, being most intense
at and below 100 km depth. It has a columnar shape that varies only slowly with depth. The most intense
core of the anomaly may plunge ~25° with respect to the vertical to the southwest. Resolution tests
(Figure 2d and supporting information Text S5) indicate that the data are adequate to resolve the
anomaly’s base, where such a feature is present in the ~250-300 km range, yet it is not imaged in our
inversion. The NAA is centered in southern New Hampshire (N42.8, 72.2°W) and is ~400 km wide, measured
perpendicular to the continental margin, and is somewhat elongated in the margin-parallel direction.
The peak-to-peak range in vs anomalies in the region is ~9.8%, which agrees with the rough estimate
derived previously.

The S wave and P wave traveltime anomalies are highly correlated, with (JAt)s/(0At)p=3.98+0.26 (95 %)
(Figure 2b and supporting information Text S6). If we assume these anomalies arise from compressional
and shear velocity heterogeneities Avs and Avp around the background velocities of vys=4.52km/s and
vop=28.30 km/s given by AK135 for 210 km depth, then (supporting information Text S6)

Avs (5At)5 Vop -2
— = — = 1.18%0.08 (95
Avp (5At)P Vos ( %)

This ratio can be compared to the results of inversions, though with caution, since those results depend upon
the values of the damping parameters, the distribution of rays and upon depth. Schmandt and Lin’s [2014]
model yields Avs/Avp=1.00£0.10 (95 %) at 195 km depth (supporting information Text S6). When the damp-
ing parameters in our inversions are chosen so that the P and S error reduction is equal, they yield the similar
value of 0.96 £ 0.02 (95 %) at 200 km depth (Figure 2c).
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3. Discussion

The tectonic inheritance model [Thomas, 2006] suggests that the AF is just west of the eastern edge of
Laurentia. The juxtaposition of the AF and the western edge of the NAA indicate that at shallow mantle
depths, the emplacement of the NAA was guided by the eastern edge of the Laurentian lithosphere and does
not crosscut it.

The observed perturbations in compressional and shear velocity across the NAA are very intense, comparable
to the difference in shallow mantle shear velocities between tectonically quiescent cratonic North America
and the tectonically active Basin and Range province [Nettles and Dziewonski, 2008]. This latter velocity con-
trast is thought to be caused by the ~700°C temperature contrast between extremely hot partially molten
Basin and Range asthenosphere, with temperature as hot [Plank and Forsyth, 2016] as ~1550-1600°C (at
100 km depth) and cold [Hasterok and Chapman, 2011] (~850-900°C at 100 km depth) lithosphere beneath
the craton. The observed 6.8 s traveltime anomaly could be caused by 770°C + 180°C temperature anomaly,
according to a recent model [Cammarano et al., 2003] of velocity-temperature derivatives (supporting infor-
mation Text S7).

A thermal anomaly perturbs both compressional and shear velocity. However, modeling the thermally
induced AVs/AVp=[dVs/dA]/[dVp/dA] in the upper mantle is complicated by the need to correct laboratory
measurements for the effects of pressure, anelasticity, partial melt, etc. A recent model [Cammarano et al.,
2003] predicts AVs/AVp=0.97 at 200 km depth along a 1300°C adiabat (supporting information Text S8).
The good agreement between this prediction and our estimates implies that the observed velocity ratios
are consistent with a thermal origin. Furthermore, the observed velocity ratio rules out some other mechan-
isms, including fluctuations in the Fe/Mg ratio of mantle minerals (supporting information Text S8).

Monte Carlo simulations [Levin et al., 1996] indicate that the scaling between shear wave splitting times
and P wave traveltime anomalies is about 1 to +0.3, when both are caused by lateral variations in upper
mantle anisotropy. This scaling implies that the observed +1.15 s fluctuation (Figure 2a) in P wave traveltime
should be accompanied by about 3.8 s of SKS splitting. In contrast, observed splitting delays rarely exceed 1's
in New England [Levin et al.,, 2000; Long et al., 2016]. Anisotropy therefore can make only a minor (<25%)
contribution to the NAA’s traveltime anomaly.

Excess Helium-3 is generally considered a proxy for active volcanism and extension when it occurs in conti-
nental settings. Its presence in the groundwater of southern New England [Torgersen et al., 1995] is anoma-
lous and has prompted explanations involving storage and slow release of mantle helium from an ancient
source such as the GMHS [Torgersen et al., 1995]. This excess helium is better explained by modern
mantle upwelling.

Several asthenospheric flow scenarios plausibly could have caused the NAA: Large-scale flow of the astheno-
sphere past the west deepening lithospheric keel of the continent could induce eddies that drive small-scale
convective upwelling [King and Ritsema, 2000]. Large-scale flow of the asthenosphere also could entrain and
laterally transport anomalously hot asthenosphere that was formed elsewhere (e.g., from a distant plume
[Phipps Morgan et al., 1995]). Delamination of the continental lithosphere could lead to local upwelling of
the asthenosphere to fill in the gap made by cold, sinking material [Boyd et al.,, 2004]. The available data
do not rule out any of these mechanisms, yet our analysis is most consistent with the first; that is, the NAA
is a small-scale cratonic edge-related upwelling. Lateral transport (the second scenario) implies significant
shearing and tilting of a hot region, which is not supported by the NAA's columnar shape and vertical orien-
tation. A recent delamination implies the presence of seismically fast material below the NAA and predicts a
strong seismic impedance contrast in the lower asthenosphere. No such feature has been observed in recei-
ver functions from southern New England (and especially in the high-quality results from station HRV
(Harvard, Massachusetts)) [Rychert et al., 2007].

The Missouri to Massachusetts Broadband Seismometer Experiment (MOMA) [Li et al., 1998] provides high-
resolution estimates of the topography of the 410 km discontinuity across a transect that includes the
NAA. Only very slight (<5km) and statistically insignificant deepening of the discontinuity is detected
beneath the NAA in contrast to the ~25 km deflection expected when an upwelling crosses this discontinuity.
This null result is consistent with a shallow edge-driven model in which mantle flow lines do not cross into the
transition zone.
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is warranted,

Flow models based on buoyancy inferred from global seismic tomography [Forte et al., 2010; Levin et al., 2013]
predict subhorizontal flow in the asthenosphere beneath eastern North America, with some downwelling
beneath the cold craton. The southwesterly azimuth of this flow is consistent with layered anisotropy models
satisfying multiple constraints [Yuan and Levin, 2014] and also with the southwesterly plunge of the NAA
(which might be caused by mantle shear). However, these flow models appear to be too long wavelength
to resolve the kind of small-scale upwelling we propose for the NAA.

Subvertical flow, as we envision for the NAA, might be associated with smaller than normal SKS splitting delay
times, because seismic anisotropy perpendicular to the A axis of olivine, which aligns with flow, is weak.
Single-layer interpretations of SKS delay times in southern New England [Long et al., 2016] do appear to give
smaller delays in the vicinity of the NAA than in adjacent areas to the north and west, though the planform
does not match its shape in any detail. The difference might be due the interfering effect of lithospheric ani-
sotropy and might be resolved by multilayer interpretations, should they become available.

The NAA has no obvious expression in the Bouguer gravity map of the United States [Kucks, 1999], which is
dominated by linear features that strike parallel to the Appalachian orogeny and are thought to be related to
variations in crustal density and thickness [Bird and Dewey, 1970; Hatcher, 2010]. Neither does the NAA have
an obvious expression in the much longer wavelength GEOID12B geoid map [Wang, 2012]. The horizontal
position of the NAA is close to the transition between the sedimented southern Appalachians and more dee-
ply eroded metamorphic northern Appalachians that Crough [1981] proposed to be related to uplift asso-
ciated with the passage of the GMHS. A link to edge-driven uplift is in our opinion more plausible because
the uplift in northern New England is far from the GMHS track but plausibly nearby other now-defunct
NAA-like upwellings that might have occurred farther north along the cratonic margin during the last
100 Ma. However, this speculation lacks corroborating data.

Notwithstanding our interpretation of the NAA as due to present-day mantle upwelling and the presence of a
Helium-3 anomaly that implies a pathway for volatiles from the NAA to the crust, no Tertiary volcanism or tec-
tonism has been reported in southern New England. The most recent volcanic/plutonic rocks are associated
with the passage of the Great Meteor hot spot at about 110-130 Ma and the most recent tectonic event was
the uplift of the southeastern Adirondack Mountains at 83-112 Ma [Roden-Tice et al., 2000]. One possibility is
that the mantle upwelling that emplaced the NAA has not been sufficiently continuous to produce large
volumes of melt. An intriguing alternate possibility is that the NAA is an incipient feature that will lead to a
magmatic event in a few million years.

4, Conclusions

The Northern Appalachian Anomaly (NAA) is an extremely strong (~10% shear velocity contrast), columnar
and laterally localized (400 km diameter) low-velocity anomaly centered in the asthenosphere beneath
southern New England. Its shear velocity contrast and, by implication, temperature differential are of similar
magnitude to that between the Basin and Range province of western North America and the North American
craton. Its strength, together with its AVs/AVp ratio of about unity, is compatible with it being a modern
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thermal anomaly. Although centered close to the track of the Great Meteor hot spot, it is not elongated
parallel to it and does not crosscut the cratonic margin. In contrast to previous explanations [van der Lee
and Nolet, 1997; Eaton and Frederiksen, 2007], we believe that the NAA's spatial association with the Great
Meteor hot spot track is coincidental. Instead, the evidence is more compatible with the NAA being caused
by small-scale upwelling associated with an eddy in the asthenospheric flow field at the continental margin.
Furthermore, the NAA is only one of several low-velocity anomalies along the eastern North American margin
(albeit the most intense and best studied). The others [Chu et al., 2013; Schmandt and Lin, 2014] include the
Central Appalachian Anomaly (CAA) beneath northern Virginia and as yet unnamed anomalies beneath
northern South Carolina and Louisiana. The edge-driven upwelling scenario provides a common explanation
for them all; furthermore, it does so in a way that explains why they are all present today and lack the age
progression characteristic of a hot spot (such as the GMHS and the one hypothesized by Chu et al. [2013]).
Edge-driven upwelling is, in our view, more compelling than scenarios tailored to each anomaly, individually,
because it implies a process that might be occurring at continental margins worldwide.
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