Выбор фона:
21.09.2013

Пятый постулат

Оценка: 0.0    2639 0 Наука и Технологии
01:27

Среди аксиом Евклида была аксиома о параллельности прямых, а точнее, пятый постулат о параллельных линиях: если две прямые образуют с третьей по одну ее сторону внутренние углы, сумма которых меньше развернутого угла, то такие прямые пересекаются при достаточном продолжении с одной стороны. В современной формулировке она говорит о существовании не более одной прямой, проходящей через данную точку вне данной прямой и параллельной этой данной прямой.

Сложность формулировки пятого постулата породила мысль о возможной зависимости его от других постулатов, и потому возникали попытки вывести его из остальных предпосылок геометрии. Как правило, это заканчивалось неудачей. Были попытки доказательства от противного: прийти к противоречию, предполагая верным отрицание постулата. Однако и этот путь был безуспешным.

Наконец, в начале XX века почти одновременно сразу у нескольких математиков: у К. Гаусса в Германии, у Я. Больяи в Венгрии и у Н. Лобачевского в России возникла мысль о существовании геометрии, в которой верна аксиома: на плоскости через точку, не лежащую на данной прямой, проходят по крайней мере две прямые, не пересекающие данную.

В силу приоритета Н. Лобачевского, который первым выступил с этой идеей в 1826, и его вклада в развитие новой, отличной от евклидовой геометрии последняя была названа в его честь «геометрией Лобачевского».

Аксиоматика планиметрии Лобачевского отличается от аксиоматики планиметрии Евклида лишь одной аксиомой: аксиома параллельности заменяется на ее отрицание – аксиому параллельности Лобачевского

Найдутся такая прямая a и такая не лежащая на ней точка A, что через A проходят по крайней мере две прямые, не пересекающие a.

Как уже отмечалось в § 15.1, непротиворечивость системы аксиом доказывается представлением модели, в которой реализуются данные аксиомы. Модель планиметрии Лобачевского на евклидовой плоскости, которая будет здесь представлена, сделана по материалам учебника «Геометрия» (А. Д. Александров, А. Л. Вернар, В. И. Рыжик, М: Просвещение, 1991). Эта модель была предложена французским математиком Анри Пуанкаре в 1882 году.

Для начала напомним основные понятия и аксиоматику, на которой базировалось изложение, систематизировав их заново и дополнив необходимыми аксиомами.

За основные объекты были приняты точка, прямая и фигура. За основные отношения между этими объектами принимаются:

    1) точка принадлежит фигуре, в частности прямой;

    2) точка лежит между двумя точками для точек прямой.

Следующие определения базируются на основных определениях.

  1. Фигура называется объединением некоторых данных фигур, если ей принадлежат все точки этих фигур, и никакие другие.
  2. Отрезком называется часть прямой, которая состоит из всех точек этой прямой, лежащих между двумя данными ее точками. Эти точки называются концами отрезка.
  3. Лучом AB называется часть прямой, состоящая из всех ее точек, лежащих по ту же сторону от точки A, что и точка B. Точка A называется вершиной луча.
  4. Углом называется фигура, которая состоит из точки – вершины угла и двух различных лучей, исходящих из этой точки, – сторон угла.
  5. Полуплоскостью, ограниченной прямой a, называется фигура, обладающая следующими свойствами:
    • она не содержит прямую a;
    • если точки A и B принадлежат полуплоскости, то отрезок AB не имеет общих точек с a;
    • если же A принадлежит полуплоскости, а B нет, то отрезок AB имеет общую точку с прямой a.

Приведем систему аксиом, обозначив римской цифрой номер группы, а арабской – номер аксиомы в группе.

    I. Аксиомы связи прямой и точки.

  1. Существуют, по крайней мере, две точки.
  2. Какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей.
  3. Через любые две точки можно провести прямую и только одну.
  4. Из трех точек на прямой одна и только одна лежит между двумя другими.

    II. Метрические аксиомы отрезка.

  1. Каждый отрезок имеет определенную длину, большую нуля. Длина отрезка равна сумме длин частей, на которые он разбивается любой его точкой.
  2. На каждом луче от его начала можно отложить отрезок заданной длины и только один.

    III. Аксиома непрерывности.

  1. Пусть A и B – любые две точки прямой a и пусть  и  – совокупности всех точек отрезка AB, таких, что     и любая точка из  лежит по ту же сторону, что и точка A от любой точки из  Тогда на прямой a существует точка C, такая, что любая точка из  лежит по ту же сторону от C, что и A, а любая точка из  – по ту же сторону от C, что и B.

    IV. Аксиомы плоскости.

  • Прямая разбивает плоскость на две полуплоскости.
  • Каждый угол имеет определенную градусную меру, большую нуля. Развернутый угол равен 180°. Градусная мера угла равна сумме градусных мер углов, на которые он разбивается любым лучом, проходящим между его сторонами.
  • От любого луча в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180°, и только один.
  • Каков бы ни был треугольник, существует равный ему треугольник в заданном расположении относительно данного луча.

    V. Аксиома параллельности Евклида.

Через точку, не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной.

Построение модели Пуанкаре начнем с того, что придадим конкретный смысл основным объектам и основным отношениям планиметрии Лобачевского. Для этого фиксируем на евклидовской плоскости E горизонтальную прямую x. Она носит название «абсолюта». Точками плоскости Лобачевского считаются точки плоскости E, лежащие выше абсолюта x. Таким образом, в модели Пуанкаре плоскость Лобачевского – это полуплоскость L, лежащая выше абсолюта.

Прямыми плоскости L считаются полуокружности с центрами на абсолюте или лучи с вершинами на абсолюте и перпендикулярные ему.

Фигура на плоскости Лобачевского – это фигура полуплоскости L. Принадлежность точки фигуре понимается так же, как и на евклидовой плоскости E. При этом отрезком плоскости L считается дуга окружности с центром на абсолюте или отрезок прямой, перпендикулярной абсолюту (см. рис. 15.2.1). Точка K лежит между точками C и D, значит, что K принадлежит дугеCD. В условиях нашей модели это эквивалентно тому, что K' лежит между C' и D', где C'K' и D' – проекции точек CK и Dсоответственно на абсолют. Чтобы ввести понятие равенства неевклидовых отрезков в модели Пуанкаре, определяют неевклидовы движения в этой модели.

Рисунок 15.2.1

Неевклидовым движением называется преобразование L, которое является композицией конечного числа инверсий с центрами на абсолюте и осевых симметрий плоскости E, оси которых перпендикулярны абсолюту. Инверсии с центром на абсолюте и осевые симметрии плоскости E, оси которых перпендикулярны абсолюту, называют неевклидовыми симметриями. Два неевклидовых отрезка называют равными, если один из них неевклидовым движением можно перевести во второй.

Свойства неевклидовых движений.
  1. Суперпозиция неевклидовых движений есть снова неевклидово движение. Это вытекает непосредственно из определения неевклидова движения.
  2. При неевклидовых движениях образами неевклидовых отрезков, прямых, лучей и углов являются соответственно неевклидовы отрезки, прямые, лучи и углы. Это свойство вытекает из свойств инверсии и свойств евклидовой осевой симметрии. Необходимо отметить, что неевклидовы углы, преобразующиеся друг в друга неевклидовым движением, равны в смысле приведенного ранее определения, и их величины (в евклидовом смысле) также равны.
  3. Если неевклидово движение переводит неевклидов луч в себя, то либо это тождественное преобразование, либо неевклидова осевая симметрия относительно неевклидовой прямой, содержащей данный луч. В обоих случаях все точки этой прямой для данного преобразования неподвижны. Это свойство дается без доказательства.

Выше дана реализация всех основных понятий аксиоматики планиметрии Лобачевского через понятия евклидовой геометрии. Теперь необходимо проверить справедливость приведенных выше аксиом.

Из группы аксиом I очевидна справедливость аксиом I.1, I.2, I.4.

Аксиома I.3. 

Пусть даны точки A и B.

Рисунок 15.2.2
  • Рисунок 15.2.3
    Прямая (евклидова) AB не перпендикулярна к абсолюту (рис. 15.2.2). Тогда серединный перпендикуляр p отрезка AB пересекает абсолют в некоторой точке O. Так как по построению OA = OB, то полуокружность окружности S с центром в точке O и радиусомOA, лежащая выше абсолюта, является неевклидовой прямой, содержащей точки A и B. Эта прямая (неевклидова) единственна, так как на абсолюте есть лишь одна точка, равноудаленная от точек A и B, – это точка O.
  • Прямая (евклидова) AB перпендикулярна абсолюту (рис. 15.2.3). Тогда ее часть, лежащая выше абсолюта, будет неевклидовой прямой, проходящей через точки A и B, посколькуp || x.

Аксиома II.1. 

Так как каждый неевклидов отрезок AB представляет из себя либо евклидов отрезок (если прямая AB перпендикулярна абсолюту), либо дугу окружности, то в первом случае аксиома выполнена очевидно.

Для анализа второго случая допустим, что AB есть искомый неевклидов отрезок. Рассмотрим инверсию i относительно окружности S с центром в точке O, пересечения неевклидовой прямой AB и абсолюта и радиусом R, равным OA > OB(рис. 15.2.4). При этом образом невклидовой прямой AB будет луч  где  , а образом неевклидова отрезка – отрезок   евклидова луча  Здесь  – вторая точка пересечения неевклидовой прямой AB и абсолюта. Так как  является образом отрезка AB при неевклидовом движении, то они равны по определению и, следовательно, имеют равные длины. Так как аксиома выполнена для евклидова отрезка , то она выполнена и для неевклидова отрезка AB.

Рисунок 15.2.4

Аксиома II.2. 

Возможны несколько случаев.

  • Пусть неевклидов луч представляет из себя луч евклидовой прямой, который не имеет точки пересечения с абсолютом (рис. 15.2.5). Тогда выполнение аксиомы следует из ее справедливости для евклидова луча.
  • Пусть неевклидов луч представляет из себя часть евклидовой прямой, перпендикулярной абсолюту и ограниченной началом A луча (включая точку A) и точкой O, лежащей на абсолюте (рис. 15.2.6).

    Рисунок 15.2.5
    Рисунок 15.2.6

    Сделаем преобразование инверсии относительно окружности S с центром в точке O и радиусом OA. По свойствам инверсии отрезок OA преобразуется в луч евклидовой прямой OA с началом в точке A. В соответствии с аксиомой II.2 на полученном луче от его начала можно отложить отрезок заданной длины и только один. Пусть B – конец этого отрезка. Тогда ее прообразом при инверсии i является некоторая точка  искомого евклидова луча. Так как отрезок  переводится в отрезок AB неевклидовым движением, то они равны и равны их длины. Это завершает доказательство.

  • Неевклидов луч – дуга AO полуокружности, содержащая точку A – начало луча, и не содержащая точку O, точку пересечения полуокружности с абсолютом (рис. 15.2.7). Как и в случае рассмотрения аксиомы II.1, сделаем преобразование инверсии i относительно окружности S с центром в точке O и радиусом AO. Образом неевклидова лучаAO будет луч евклидовой прямой, перпендикулярной абсолюту. На этом луче можно отложить отрезок данной длины и только один. Пусть B – конец этого отрезка. Далее обоснование дословно повторяет обоснование, приведенное в предыдущем пункте.

    Рисунок 15.2.7
Рисунок 15.2.8

Аксиома непрерывности III для неевклидовых отрезков сводится к случаю евклидовых отрезков проектированием на абсолют (рис. 15.2.8) или преобразованием неевклидова отрезка в отрезок евклидовой прямой, перпендикулярной абсолюту, с помощью инверсии, описанной при доказательстве справедливости аксиомы II.1. В модели Пуанкаре выполняется аксиома IV.1. Неевклидовы полуплоскости изображены на рис. 15.2.9. Неевклидов отрезок, соединяющий две точки неевклидовой полуплоскости, не пересекает ее границы. Действительно, предположив противное, мы пришли бы к тому, что евклидовы окружности пересекались бы в четырех точках (рис. 15.2.10), что невозможно.


Рисунок 15.2.9
Рисунок 15.2.10



 


Поделитесь в социальных сетях

Комментарии 0

Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]

Похожие материалы

Разговоры у камина
Календарь
Последние комментарии
Останки первых людей возрастом 1,86 миллиона лет обнаружили в Кении
Румынский ,местечковый язык пастухов ,а не имеющий те же корни могучий и совершенный государственный (от Везунчик)
Останки первых людей возрастом 1,86 миллиона лет обнаружили в Кении
Поспорить не с чем. Кроме того что искусственный язык лишон души - того звучания которое сохраняется (от Везунчик)
ООН заключило договор с инопланетными расами о постройке ими баз на обратной стороне Луны
я каждую ночь хожу туда по маленькому. почему бы не землян луна?
зеленых я там не видел, хотя (от limon-1661i1)

Останки первых людей возрастом 1,86 миллиона лет обнаружили в Кении
Всякий достаточно развитый литературный язык с большим числом носителей в некоторой степени искусств (от Rosto)