Вход / Регистрация
21.11.2024, 20:50
Что такое «карликовая планета»?
Термин «карликовая планета» приобрел неслыханную популярность за последние пару лет. В рамках трехсторонней категоризации объектов, вращающихся вокруг Солнца, этот термин был принят на вооружение в 2006 году из-за открытия объектов за орбиту Нептуна, сопоставимых по размерам с Плутоном. С тех пор он стал использоваться для описания многих объектов в Солнечной системе, перевернув старую систему классификации, в которой было девять планет.
Также этот термин породил путаницу и противоречия, в частности, связанные с применением его в отношении тел вроде Плутона. Тем не менее Международный астрономический союз (МАС) признает пять тел в пределах нашей Солнечной системы карликовыми планетами, еще шесть будут определены в ближайшие годы и порядка 200 таких тел может быть в пределах пояса Койпера.
Определение
Согласно определению, принятому МАС в 2006 году, карликовая планета — это «небесное тело на орбите звезды, которое достаточно массивно, чтобы округляться за счет собственной гравитации, но не очищать ближайший регион от планетезималей, и не является спутником. Кроме того, оно должно обладать достаточной массой для преодоления предела прочности на сжатие и достижения гидростатического равновесия».
В сущности, этот термин означает любой объект с планетарной массой, не являющийся ни планетой, ни естественным спутником, который отвечает двум базовым критериям. Во-первых, он должен быть на прямой орбите Солнца и не являться луной вокруг другого тела. Во-вторых, он должен быть достаточно массивным, чтобы обрести сферическую форму под действием собственной силы тяжести. И, в отличие от планеты, он не должен очищать окрестности вокруг своей орбиты.
Размер и масса
Для того чтобы тело округлилось, оно должно быть достаточно массивным, чтобы гравитация стала доминирующей силой, влияющей на форму тела. Порожденное этой массой внутреннее давление приведет к тому, что поверхность станет пластичной, будет сглаживать высокие подъемы и заполнять впадины. С мелкими телами размером менее километра в диаметре такого не происходит (вроде астероидов), ими управляют силы за пределами их собственных гравитационных сил, которые, как правило, поддерживают неправильные формы.
Крупнейшие известные транснептуновые объекты (ТНО)
Между тем, тела в несколько километров поперечником — когда сила тяжести существенная, но не доминирующая — принимают форму сфероида или «картошки». Чем больше тело, тем выше его внутреннее давление, пока не станет достаточным, чтобы преодолеть внутреннюю силу сжатия и достичь гидростатического равновесия. В этот момент тело становится настолько круглым, насколько вообще может быть, учитывая его вращение и приливные эффекты. Это определение предела карликовой планеты.
Тем не менее вращение также может повлиять на форму карликовой планеты. Если тело не вращается, оно будет сферой. Чем быстрее оно вращается, тем более вытянутым или разносторонним оно станет. Экстремальный пример такого — это Хаумеа, которая почти в два раза длиннее на основной оси, чем на полюсах. Приливные силы также приводят к тому, что вращение тела постепенно становится приливно заблокированным, и тело остается обращенным к компаньону одной стороной. Крайний пример такой системы — Плутон — Харон, оба тела приливно заблокированы между собой.
Верхние и нижние пределы размера и массы карликовых планет МАС не определяет. И хотя нижняя граница определяется достижением равновесной гидростатической формы, размер или масса, при которой этот объект достигает такой формы, зависит от его состава и термической истории.
К примеру, тела из жестких силикатов (вроде каменистых астероидов) должны достигать гидростатического равновесия при диаметре порядка 600 километров и массе 3,4 х 10^20 кг. Для менее жесткого тела из водного льда такой предел будет ближе к 320 км и 10^19 кг. В результате на сегодняшний день не существует конкретного стандарта для определения карликовой планеты в зависимости от ее размера или массы, а вместо этого он обычно определяется на основе его формы.
Орбитальное положение
В дополнение к гидростатическому равновесию, многие астрономы настояли о проведении черты между планетами и карликовыми планетами на основе их неспособности «очищать окрестности своей орбиты». Короче говоря, планеты могут убирать меньшие тела рядом со своими орбитами путем столкновения, захвата или гравитационного возмущения, тогда как карликовые планеты не обладают необходимой массой, чтобы достичь этого.
Для расчета вероятности того, что планета очистит свою орбиту, планетологи Алан Штерн и Гарольд Левинсон представили параметр, который они обозначают буквой «лямбда».
Этот параметр выражает вероятность столкновения в зависимости от заданного отклонения орбиты объекта. Значение этого параметра в модели Штерна пропорционально квадрату массы и обратно пропорционально времени и может быть использовано для оценки потенциала тела очищать окрестности своей орбиты.
Астрономы вроде Стивена Сотера, ученого Нью-Йоркского университета и научного сотрудника Американского музея естественной истории, предлагают использовать этот параметр для проведения черты между планетами и карликовыми планетами. Сотер также предложил параметр, который он называет планетарным дискриминантом — обозначается буквой «мю» — который рассчитывается путем деления массы тела на общую массу тел других объектов на той же орбите.
Признанные и возможные карликовые планеты
В настоящее время есть пять карликовых планет: Плутон, Эрис, Макемаке, Хаумеа и Церера. Только Церера и Плутон наблюдались достаточно, чтобы быть бесспорно вписанными в эту категорию. МАС постановил, что безымянные транснептуновые объекты (ТНО) с абсолютной величиной ярче, чем +1 (и математически ограниченные минимальным диаметром в 838 км) должны быть причислены к карликовым планетам.
Плутон
Возможные кандидаты, которые находятся в настоящее время под рассмотрением, включают Орк, 2002 MS4, Салацию, Квавар, 2007 OR10 и Седну. Все эти объекты расположены в поясе Койпера; за исключением Седны, которая рассматривается отдельно — отдельным классом динамических ТНО во внешней Солнечной системе.
Вполне возможно, что в Солнечной системе есть еще 40 объектов, которые могут быть справедливо обозначены карликовыми планетами. По оценкам, до 200 карликовых планет могут найти в поясе Койпера после его изучения, а за пределами этого пояса их число может превзойти 10 000.
Разногласия
Сразу после решения МАС касательно определения планеты, ряд ученых выразил свое несогласие. Майк Браун (лидер группы Калтеха, которая обнаружила Эрис) соглашается с сокращением числа планет до восьми. Тем не менее ряд астрономов вроде Алана Штерна высказали критику по поводу определения МАС.
Штерн утверждает, что, подобно Плутону, Земля, Марс, Юпитер и Нептун тоже не полностью очищают свои орбитальные зоны. Земля вращается вокруг Солнца с 10 000 околоземных астероидов, которые по оценке Штерна противоречат очищению орбиты Земли. Юпитер, между тем, сопровождается 100 000 троянских астероидов на своем орбитальном пути.
В 2011 году Штерн ссылался на Плутон как на планету и считал другие карликовые планеты вроде Цереры и Эрис, а также крупные луны, дополнительными планетами. Тем не менее другие астрономы утверждают, что хотя крупные планеты и не расчищают свои орбиты, они полностью контролируют орбиты других тел в пределах своей орбитальной зоны.
Другое спорное применение нового определения планет касается планет за пределами Солнечной системы. Методы выявления внесолнечных объектов не позволяют определить напрямую, «очищает ли объект орбиту», только косвенно. В результате в 2001 году МАС утвердил отдельные «рабочие» определения для внесолнечных планет, включающие такой сомнительный критерий: «Минимальные масса/размер, необходимые для того, чтобы считать внесолнечный объект планетой, должны соответствовать параметрам, принятым для Солнечной системы».
Несмотря на то, что за принятие такого определения планет и карликовых планет высказались далеко не все члены МАС, NASA недавно объявило, что будет использовать новые руководящие принципы, установленные МАС. Тем не менее споры о решении 2006 года пока не прекращаются, и мы вполне можем ожидать дальнейшего развития событий на этом фронте, когда будет обнаружено и определено больше «карликовых планет».
По меркам МАС довольно просто определить карликовую планету, но вписать Солнечную систему в трехуровневую систему классификации будет все сложнее по мере расширения нашего понимания Вселенной.
Также этот термин породил путаницу и противоречия, в частности, связанные с применением его в отношении тел вроде Плутона. Тем не менее Международный астрономический союз (МАС) признает пять тел в пределах нашей Солнечной системы карликовыми планетами, еще шесть будут определены в ближайшие годы и порядка 200 таких тел может быть в пределах пояса Койпера.
Определение
Согласно определению, принятому МАС в 2006 году, карликовая планета — это «небесное тело на орбите звезды, которое достаточно массивно, чтобы округляться за счет собственной гравитации, но не очищать ближайший регион от планетезималей, и не является спутником. Кроме того, оно должно обладать достаточной массой для преодоления предела прочности на сжатие и достижения гидростатического равновесия».
В сущности, этот термин означает любой объект с планетарной массой, не являющийся ни планетой, ни естественным спутником, который отвечает двум базовым критериям. Во-первых, он должен быть на прямой орбите Солнца и не являться луной вокруг другого тела. Во-вторых, он должен быть достаточно массивным, чтобы обрести сферическую форму под действием собственной силы тяжести. И, в отличие от планеты, он не должен очищать окрестности вокруг своей орбиты.
Размер и масса
Для того чтобы тело округлилось, оно должно быть достаточно массивным, чтобы гравитация стала доминирующей силой, влияющей на форму тела. Порожденное этой массой внутреннее давление приведет к тому, что поверхность станет пластичной, будет сглаживать высокие подъемы и заполнять впадины. С мелкими телами размером менее километра в диаметре такого не происходит (вроде астероидов), ими управляют силы за пределами их собственных гравитационных сил, которые, как правило, поддерживают неправильные формы.
Крупнейшие известные транснептуновые объекты (ТНО)
Между тем, тела в несколько километров поперечником — когда сила тяжести существенная, но не доминирующая — принимают форму сфероида или «картошки». Чем больше тело, тем выше его внутреннее давление, пока не станет достаточным, чтобы преодолеть внутреннюю силу сжатия и достичь гидростатического равновесия. В этот момент тело становится настолько круглым, насколько вообще может быть, учитывая его вращение и приливные эффекты. Это определение предела карликовой планеты.
Тем не менее вращение также может повлиять на форму карликовой планеты. Если тело не вращается, оно будет сферой. Чем быстрее оно вращается, тем более вытянутым или разносторонним оно станет. Экстремальный пример такого — это Хаумеа, которая почти в два раза длиннее на основной оси, чем на полюсах. Приливные силы также приводят к тому, что вращение тела постепенно становится приливно заблокированным, и тело остается обращенным к компаньону одной стороной. Крайний пример такой системы — Плутон — Харон, оба тела приливно заблокированы между собой.
Верхние и нижние пределы размера и массы карликовых планет МАС не определяет. И хотя нижняя граница определяется достижением равновесной гидростатической формы, размер или масса, при которой этот объект достигает такой формы, зависит от его состава и термической истории.
К примеру, тела из жестких силикатов (вроде каменистых астероидов) должны достигать гидростатического равновесия при диаметре порядка 600 километров и массе 3,4 х 10^20 кг. Для менее жесткого тела из водного льда такой предел будет ближе к 320 км и 10^19 кг. В результате на сегодняшний день не существует конкретного стандарта для определения карликовой планеты в зависимости от ее размера или массы, а вместо этого он обычно определяется на основе его формы.
Орбитальное положение
В дополнение к гидростатическому равновесию, многие астрономы настояли о проведении черты между планетами и карликовыми планетами на основе их неспособности «очищать окрестности своей орбиты». Короче говоря, планеты могут убирать меньшие тела рядом со своими орбитами путем столкновения, захвата или гравитационного возмущения, тогда как карликовые планеты не обладают необходимой массой, чтобы достичь этого.
Для расчета вероятности того, что планета очистит свою орбиту, планетологи Алан Штерн и Гарольд Левинсон представили параметр, который они обозначают буквой «лямбда».
Этот параметр выражает вероятность столкновения в зависимости от заданного отклонения орбиты объекта. Значение этого параметра в модели Штерна пропорционально квадрату массы и обратно пропорционально времени и может быть использовано для оценки потенциала тела очищать окрестности своей орбиты.
Астрономы вроде Стивена Сотера, ученого Нью-Йоркского университета и научного сотрудника Американского музея естественной истории, предлагают использовать этот параметр для проведения черты между планетами и карликовыми планетами. Сотер также предложил параметр, который он называет планетарным дискриминантом — обозначается буквой «мю» — который рассчитывается путем деления массы тела на общую массу тел других объектов на той же орбите.
Признанные и возможные карликовые планеты
В настоящее время есть пять карликовых планет: Плутон, Эрис, Макемаке, Хаумеа и Церера. Только Церера и Плутон наблюдались достаточно, чтобы быть бесспорно вписанными в эту категорию. МАС постановил, что безымянные транснептуновые объекты (ТНО) с абсолютной величиной ярче, чем +1 (и математически ограниченные минимальным диаметром в 838 км) должны быть причислены к карликовым планетам.
Плутон
Возможные кандидаты, которые находятся в настоящее время под рассмотрением, включают Орк, 2002 MS4, Салацию, Квавар, 2007 OR10 и Седну. Все эти объекты расположены в поясе Койпера; за исключением Седны, которая рассматривается отдельно — отдельным классом динамических ТНО во внешней Солнечной системе.
Вполне возможно, что в Солнечной системе есть еще 40 объектов, которые могут быть справедливо обозначены карликовыми планетами. По оценкам, до 200 карликовых планет могут найти в поясе Койпера после его изучения, а за пределами этого пояса их число может превзойти 10 000.
Разногласия
Сразу после решения МАС касательно определения планеты, ряд ученых выразил свое несогласие. Майк Браун (лидер группы Калтеха, которая обнаружила Эрис) соглашается с сокращением числа планет до восьми. Тем не менее ряд астрономов вроде Алана Штерна высказали критику по поводу определения МАС.
Штерн утверждает, что, подобно Плутону, Земля, Марс, Юпитер и Нептун тоже не полностью очищают свои орбитальные зоны. Земля вращается вокруг Солнца с 10 000 околоземных астероидов, которые по оценке Штерна противоречат очищению орбиты Земли. Юпитер, между тем, сопровождается 100 000 троянских астероидов на своем орбитальном пути.
В 2011 году Штерн ссылался на Плутон как на планету и считал другие карликовые планеты вроде Цереры и Эрис, а также крупные луны, дополнительными планетами. Тем не менее другие астрономы утверждают, что хотя крупные планеты и не расчищают свои орбиты, они полностью контролируют орбиты других тел в пределах своей орбитальной зоны.
Другое спорное применение нового определения планет касается планет за пределами Солнечной системы. Методы выявления внесолнечных объектов не позволяют определить напрямую, «очищает ли объект орбиту», только косвенно. В результате в 2001 году МАС утвердил отдельные «рабочие» определения для внесолнечных планет, включающие такой сомнительный критерий: «Минимальные масса/размер, необходимые для того, чтобы считать внесолнечный объект планетой, должны соответствовать параметрам, принятым для Солнечной системы».
Несмотря на то, что за принятие такого определения планет и карликовых планет высказались далеко не все члены МАС, NASA недавно объявило, что будет использовать новые руководящие принципы, установленные МАС. Тем не менее споры о решении 2006 года пока не прекращаются, и мы вполне можем ожидать дальнейшего развития событий на этом фронте, когда будет обнаружено и определено больше «карликовых планет».
По меркам МАС довольно просто определить карликовую планету, но вписать Солнечную систему в трехуровневую систему классификации будет все сложнее по мере расширения нашего понимания Вселенной.
 
Источник: http://hi-news.ru/