Реактивные движки на самолетах заменят ионной тягой
Не исключено, что в ближайшем будущем появятся первые легкие самолеты на практически бесшумной и экологически чистой реактивной тяге. Исследователи из Массачусетского технологического института (MIT) провели серию расчетов и экспериментов и выяснили, что атмосферные ионные двигатели могут быть гораздо эффективнее, чем считалось ранее.
На самом деле явление электрогидродинамической тяги или по-простому ионного ветра было открыто еще в 1960 году. Суть его в следующем: когда ток проходит между двумя электродами, один из которых тоньше, чем другой, создается поток воздуха. Если подать на проводники достаточное напряжение, то можно получить очень мощную воздушную струю, которой будет достаточно для того, чтобы удерживать самолет в воздухе.
К сожалению этот, без сомнения, привлекательный тип реактивного двигателя долгое время оставался забавой для инженеров и фокусников, поскольку считался недостаточно мощным доля создания "серьезной" реактивной тяги. Некоторые ученые предположили, что атмосферные ионные реактивные двигатели крайне неэффективны: требуют огромное количество электроэнергии при не очень большой тяге.
Тем не менее, расчеты и эксперименты специалистов MIT показали, что в определенных условиях ионные двигатели могут быть гораздо более эффективным источником тяги, чем обычные реактивные двигатели. В своих экспериментах они обнаружили, что ионный ветер может выдавать до 110 ньютонов тяги на киловатт, по сравнению с 2 ньютонами на киловатт у обычного реактивного двигателя. Таким образом ионный ветер эффективно использоваться на некоторых типах летательных аппаратов, прежде всего на небольших легких самолетах. При этом ионные двигатели практически бесшумны и невидимы в инфракрасном диапазоне, поскольку не выделяют гигантское количество тепла, как традиционные реактивные.
В MIT разработали базовый дизайн эффективного ионного двигателя. Установка для производства ионного ветра состоит из трех частей: очень тонкий медный электрод (эмитент), толстая трубка из алюминия (коллектор) и воздушный зазор между ними. Вся конструкция собрана на легкой раме, в которой проложены провода для подключения коллектора и эмитента к источнику электропитания. При подаче напряжения градиент поля «вырывает» электроны из соседних молекул воздуха и ионизированные молекулы сильно отталкивается от эмитента и притягиваются к коллектору. При этом облако ионов захватывает окружающие нейтральные молекулы воздуха и создает реактивную тягу.
Интересно, что наибольшую эффективность ионный двигатель показал при низкой скорости воздушной струи. Другими словами, ионный ветер лучше использовать для медленного движения большого количества воздуха, а не разгонять небольшие объемы до сверхзвуковых скоростей. Это означает, что оптимальнее всего применять ионный двигатель на медленных самолетах, у которых воздухозаборники для ионного ветра будут располагаться фактически по всей поверхности. Это сразу наводит на мысль о малозаметных беспилотных самолетах-разведчиках с большим размахом крыльев.
Надо отметить, что расчеты MIT показывают высокие требования ионного двигателя к напряжению: для небольшого самолета понадобится источник энергии, выдающий сотни или даже тысячи киловольт. Напряжения должны быть огромные, но в MIT полагают, что их можно получить от сверхлегких солнечных панелей и топливных элементов.