Вход / Регистрация
20.12.2024, 09:16
Пуленепробиваемый графен
Слои углерода в один атом толщиной могут поглощать удары, которые пробили бы даже сталь. Последние исследования показали, что чистый графен показывает себя в два раза лучше, чем ткань, которая в настоящее время используется при создании пуленепробиваемых жилетов, что делает его идеальным для создания брони для солдат и полиции.
Графен представляет собой лист одиночных атомов углерода, соединенных вместе в форме пчелиных сот. Будучи отличным проводником тепла и электричества, графен уже нашел применение в компьютерах и электронике и обещает стать чудо-материалом 21 века, заменив кремний. Помимо этого, графен невероятно прочен для своего легкого веса, что делает его идеальным материалом для бронежилетов.
Тем не менее не так просто проверять прочность такого тонкого материала посредством прямых выстрелов, поскольку материал толщиной в атом полностью разрушается при таком воздействии. Предыдущие эксперименты включали проверку прочности графена наноснарядами, которые попадают в него на скорости меньше метра в секунду, или обстреливание лазерными импульсами на манер дробовика. Но эти методы также не предоставляют эффективных данных о прочности графена и уж точно не покажут его стойкость относительно высокоскоростных снарядов, говорит Че-Хван Ли из Университета Массачусетс-Амхерст.
Вместе с коллегами Ли разработал миниатюрный баллистический тест для проверки стойкости графена. Они использовали лазерный импульс для нагрева золотых нитей, пока те не испарятся, имитируя действие пороха, чтобы запустить стеклянную пулю микронного размера в 10-100 листов графена на скорости 3000 метров в секунду — это примерно треть скорости пули, выпущенной из M16.
Ученые обнаружили, что графеновые листы рассеивают кинетическую энергию, вытягиваясь в форме конуса в точке удара пули, а затем радиально трескаются наружу. Трещины — это одна из слабостей однослойного графена, говорит Ли, но тем не менее графен показал себя в два раза лучше кевлара и выдержал в 10 раз больше кинетической энергии, чем могла бы сталь. Использование нескольких слоев графена или включение его в композитную структуру может также спасти материал от трещин.
Ученые уже давно заинтересовались графеном как вариантом для бронежилетов, но работа Ли — это первый документ, подробно описывающий то, как материал поглощает кинетическую энергию. Звуковые волны в графене распространяются в три раза быстрее, чем в стали, а это значит, что первый материал может быстрее поглощать и рассеивать их энергию — эффективно замедляя снаряд и предотвращая его проникновение. Кроме того, методы с использованием пуль микронного размера могут быть полезны для изучения других высокопроизводительных материалов в экстремальных условиях.
Графен представляет собой лист одиночных атомов углерода, соединенных вместе в форме пчелиных сот. Будучи отличным проводником тепла и электричества, графен уже нашел применение в компьютерах и электронике и обещает стать чудо-материалом 21 века, заменив кремний. Помимо этого, графен невероятно прочен для своего легкого веса, что делает его идеальным материалом для бронежилетов.
Тем не менее не так просто проверять прочность такого тонкого материала посредством прямых выстрелов, поскольку материал толщиной в атом полностью разрушается при таком воздействии. Предыдущие эксперименты включали проверку прочности графена наноснарядами, которые попадают в него на скорости меньше метра в секунду, или обстреливание лазерными импульсами на манер дробовика. Но эти методы также не предоставляют эффективных данных о прочности графена и уж точно не покажут его стойкость относительно высокоскоростных снарядов, говорит Че-Хван Ли из Университета Массачусетс-Амхерст.
Вместе с коллегами Ли разработал миниатюрный баллистический тест для проверки стойкости графена. Они использовали лазерный импульс для нагрева золотых нитей, пока те не испарятся, имитируя действие пороха, чтобы запустить стеклянную пулю микронного размера в 10-100 листов графена на скорости 3000 метров в секунду — это примерно треть скорости пули, выпущенной из M16.
Ученые обнаружили, что графеновые листы рассеивают кинетическую энергию, вытягиваясь в форме конуса в точке удара пули, а затем радиально трескаются наружу. Трещины — это одна из слабостей однослойного графена, говорит Ли, но тем не менее графен показал себя в два раза лучше кевлара и выдержал в 10 раз больше кинетической энергии, чем могла бы сталь. Использование нескольких слоев графена или включение его в композитную структуру может также спасти материал от трещин.
Ученые уже давно заинтересовались графеном как вариантом для бронежилетов, но работа Ли — это первый документ, подробно описывающий то, как материал поглощает кинетическую энергию. Звуковые волны в графене распространяются в три раза быстрее, чем в стали, а это значит, что первый материал может быстрее поглощать и рассеивать их энергию — эффективно замедляя снаряд и предотвращая его проникновение. Кроме того, методы с использованием пуль микронного размера могут быть полезны для изучения других высокопроизводительных материалов в экстремальных условиях.