Вход / Регистрация
19.12.2024, 03:30
«Раздевающий» сканер сделали компактным
Российские и британские специалисты смогли уменьшить размеры терагерцового сканера. Устройство, которое теперь помещается в карман, способно представить человека без одежды, показать ребенка у беременной женщины, продемонстрировать, что написано на страницах закрытой книги.
Терагерцовое излучение – одно из наиболее перспективных направлений современной физики. Специалисты в области оптики, микроэлектроники и других областей активно занимаются исследованиями, связанными с этим видом излучения. Так, терагерцовое излучение можно использовать для наблюдения за живыми клетками в режиме реального времени, для скоростной передачи информации и пр.
Единственным недостатком терагерцовых сканеров до сегодняшнего дня оставались внушительные габариты. Устройства преобразовывали пучок инфракрасных лучей в терагерцовые, используя диоды, волноводы и фотонные кристаллы, и все это занимало много места. Кроме того, существуют приборы, в которых терагерцовое излучение генерируется только при сверхнизких температурах. Их использование обходится очень дорого.
Ученые из России и Великобритании уменьшили размеры устройств, взяв в качестве основы квантовые точки. Это искусственные частицы из полупроводника, внутри которых образуется трехмерная потенциальная яма. Когда в яме оказывается электрон, он не может ее покинуть, и это позволяет использовать частицу в качестве источника света. Квантовые точки, к слову, используются в экранах телевизоров премиум-уровня.
Новый прибор способен принимать и передавать терагерцовое излучение. В его основе – «бутерброд» из квантовых точек и полупроводников из сплава галлия, алюминия и мышьяка. Работает прибор по такому принципу: в квантовую яму попадают электроны и, поглощая энергию обычных видимых лазерных лучей, вырабатывают терагерцовое излучение. Также прибор может улавливать терагерцовое излучение и преобразовывать его в электроток.
По словам Андрея Городецкого из Университета ИТМО в Санкт-Петербурге, размеры источников терагерцового излучения можно уменьшить еще сильнее. За счет разработки новых антенн специалистам удалось снять ограничение, связанное с узким световым спектром. В результате можно создавать сканеры, которые помещаются на кончике пальца. Приборы можно напечатать с применением передовых технологий.
Терагерцовое излучение – одно из наиболее перспективных направлений современной физики. Специалисты в области оптики, микроэлектроники и других областей активно занимаются исследованиями, связанными с этим видом излучения. Так, терагерцовое излучение можно использовать для наблюдения за живыми клетками в режиме реального времени, для скоростной передачи информации и пр.
Единственным недостатком терагерцовых сканеров до сегодняшнего дня оставались внушительные габариты. Устройства преобразовывали пучок инфракрасных лучей в терагерцовые, используя диоды, волноводы и фотонные кристаллы, и все это занимало много места. Кроме того, существуют приборы, в которых терагерцовое излучение генерируется только при сверхнизких температурах. Их использование обходится очень дорого.
Ученые из России и Великобритании уменьшили размеры устройств, взяв в качестве основы квантовые точки. Это искусственные частицы из полупроводника, внутри которых образуется трехмерная потенциальная яма. Когда в яме оказывается электрон, он не может ее покинуть, и это позволяет использовать частицу в качестве источника света. Квантовые точки, к слову, используются в экранах телевизоров премиум-уровня.
Новый прибор способен принимать и передавать терагерцовое излучение. В его основе – «бутерброд» из квантовых точек и полупроводников из сплава галлия, алюминия и мышьяка. Работает прибор по такому принципу: в квантовую яму попадают электроны и, поглощая энергию обычных видимых лазерных лучей, вырабатывают терагерцовое излучение. Также прибор может улавливать терагерцовое излучение и преобразовывать его в электроток.
По словам Андрея Городецкого из Университета ИТМО в Санкт-Петербурге, размеры источников терагерцового излучения можно уменьшить еще сильнее. За счет разработки новых антенн специалистам удалось снять ограничение, связанное с узким световым спектром. В результате можно создавать сканеры, которые помещаются на кончике пальца. Приборы можно напечатать с применением передовых технологий.